

Date Planned ://_ Actual Date of Attempt ://_				Daily	Daily Tutorial Sheet-6 Level-2			Expected Duration : 90 Min Exact Duration :		
76.	same effusio	temperature an	d pressur ne mixture	re as that of F e exerts a pres	$ m H_2$ is leads sure of 6	xed through the atm. The H2 c	he same l ontent of t	nother unknown ganole for 20 min. As the mixture is 0.7 n gas? None of these	After the	
77.	explod explosi observ	ed under condi ion was 90ml. (tions whi On treatm vapour de	ch allowed the nent with NaO ensity of the	e water f H solution compour	formed to con on, a further ond as 23, dec	dense. The contraction duce the	ed with 100 ml of e volume of the g n in volume of 20 molecular formula ons. None of these	gas after) ml was	
78.	5 ml of a gas containing only carbon and hydrogen were mixed with an excess of oxygen (30 ml) and the mixture exploded by means of an electric spark. After the explosion, the volume of the mixed gases remaining was 25 ml. On adding a concentrated solution of potassium hydroxide, the volume further diminished to 15 ml of the residual gas being pure oxygen. All volumes have been reduced to N.T.P. Calculate the molecular formula of the hydrocarbon gas. (A) C ₂ H ₆ (B) C ₃ H ₆ (C) C ₂ H ₄ (D) None of these									
79.	Consider the following statements: The mean free path of gas molecules I. decreases with increase in concentration II. increases with decrease in pressure at constant temperature III. decreases with increase in molecular size Which of the above statements are correct? (A) I, II (B) I, III (C) II, III (D) I, II, III									
80.	One m	nole of nitrogen	gas at 0.3	with fluorine	8 s to di at 1.6 a	_	a pinhole to diffuse	e, whereas one mo		
81.	The av (A) (C)	erage velocity of $434.1~{ m ms^{-1}}$ $489.9~{ m ms^{-1}}$	gas mole	cules is 400 m	/sec. Cal (B) (D)	lculate its rms 368.5 ms ⁻¹ None of thes	·	t the same temper	ature.	
82.	A grap	h is plotted bet		_		ong X-axis, wh	ere V _m is t	the molar volume	of a real	

DTG C

(C)

(C)

1.0 litre of N_2 and 7/8 litre of O_2 at the same temperature and pressure were mixed together. What is the

1

2

(D)

(D)

4

None of these

 \odot

(B)

(B)

RT

0.5

relation between the masses of the two gases in the mixture ?

(A)

(A)

1

83.

84. The volumes of two vessels at same temperature are in the ratio of 2:3. One vessel contains H_2 and other N_2 at 600 mm and 900 mm respectively. The final pressure when they are connected together is:

(Assume that N_2 and H_2 react to form NH_3)

(A) 620 mm

(B) 760 mm

(C) 780 mm

(D) 800 mm

85. The rate of effusion of two gases 'A' and 'B' under identical conditions of temperature and pressure are in the ratio of 2:1. What is the ratio of rms velocity of their molecules if T_A and T_B are in the ratio of 2:1?

(A) 2:1

(B) $\sqrt{2}:1$

(C) $2\sqrt{2}:1$

(D)